

Built-in MOSFET Single Lithium Battery Protection IC

SL19 7-1 is internally installed with a high-accuracy voltage detection circuit and a delay circuit, to realize over-charging, over-discharging and over-current protection to the battery by detecting voltage and current of the battery. It is applicable to protective circuits of single Li-ion/Li-polymer rechargeable batteries.

Functional characteristics

1)	High-accuracy voltage detection function:				
	Over-charging detection voltage	$3.5~V\sim 4.5~V$		accuracy $\pm 25 \text{ mV}$	
	Over-charging hysteresis voltage	0.2 V		accuracy $\pm 50 \text{ mV}$	
	Over-discharging detection voltage	$2.0~V\sim3.2~V$		accuracy $\pm 80 \text{ mV}$	
	• Over-discharging hysteresis voltage	0.6 V		accuracy $\pm 100 \text{ mV}$	
2)	Discharging over-current detection functio	n:			
	Over-current detection voltage	$0.05~V\sim 0.10~V$		accuracy $\pm 10 \text{mV}$	
	 Short circuit detection voltage 	0.400 V		accuracy±100mV	
3)	Charging over-current detection voltage	-0.05 V~-0.10 V		accuracy±20mV	
4)	Load detection function				
5)	Charger detection function				
6)	0V charging function				
1)	Low current consumption:				
•	Working mode		2.2 µ A (typical v	alue) (Ta = $\pm 25^{\circ}$ C)	
•	Over-discharging consumption current (with value) (Ta = $\pm 25^{\circ}$ C)	h function of self-rec	overy in over-discha	arging) 0.7 µ A (typi	cal

• Sleep current (with function of sleep) $0.05 \ \mu \text{ A} \text{ (typical value)} (\text{Ta} = \pm 25 \ \text{°C})$

- 2) Free from lead and halogen
- 3) Built-in low breakover internal resistance N-MOSFET
 - VDS = 16V
 - ESD Rating: 2000V HBM
- Product model

Parameters Product name	RSS (ON)	Over- charging protectio n voltage Voc	Over- charging relief voltage Vocr	Over- charging protectio n voltage VoD	Over- dischargi ng relief voltage V _{ODR}	Discha rging overcu rrent V _{EC1}	Short circuit Vshort	Chargi ng over- current VCHA	Over - char ging locki ng	Over - disc harg ing locki
										ng
SL197-1	60 mΩ	4 .275 V	4.075 V	2.800 V	3.000 V	0.050 V	1.000 V	-0.050 V	Y	Y

Table 1

Application fields

- Intelligent wearable devices
- Bluetooth headsets
- Package
 - DFN 2*2-6L

■System functional block diagram

■Pin Arrangement

Diagram

Top view

Figure 2 DFN2*2-6L package

No. of pin	Symbol	Description
1	VM	The charging and discharging current detection end, connected with the charger or the negative pole of the load
2	S1	The charging MOSFET source end, connected with the charger or the negative pole of the load
3	S1	The charging MOSFET source end, connected with the charger or the negative pole of the load
4	S2	The power ground end, connected with the negative pole of the power supply (battery)
5	S2	The power ground end, connected with the negative pole of the power supply (battery)
6	VCC	The power input end, connected with the positive pole of the power supply (battery)
7	-	The chip underlayer connection, required to be suspended in midair
8	-	Common-drain connecting end of the charging and discharging MOSFET

Table 2

■Absolute Max rated value

			$(Ta = 25^{\circ}C, unless otherwise)$	se noted)
Item	Symbol	Applicable terminal	Absolute Max. rated value	Unit
Supply voltage	VCC	VCC	$-0.3 \sim 7$	V
Vm end input voltage	Vm	Vm	VCC-15 to VCC+0.3	V
Gate-Source withstand voltage	Vgs	GS	±12	V
Drain-Source withstand voltage	Vds	DS	16	V
Drain Current	ID		5	Α
Operating ambient temperature	Topr		40 ~ 85	°C
Storage temperature	Tstg		40 ~ 125	°C

Table 3

Notes: It may lead to unrecoverable damages to the chip if the applied voltage exceeds the absolute max. rated value.

■Application circuit

Figure	3
--------	---

Device identification	Typical value	Device identification	Unit
Rı	470	$470 \sim 1000$	Ω
R2	2	1~3	kΩ
Cı	0.1	≥ 0.1	μF

Notes: R1 and R2 cannot be omitted, and R1 shall be no smaller than 470Ω

■Electrical specifications

($Ta = 25^{\circ}C$, unless otherwise not	ed)
---	-----

	ltem	Symbol	Testing conditions	Min	Typical	Max	Unit
01:	1 1/		Table 4	value	value	value	
Chip sup	ply voltage		-	1.0	-	6.0	V
Normal w	orking current	IVCC	VCC=3.5V	-	2.2	5.0	μΑ
Sleep con	sumption current	ISTB	VCC =1.5V	-	0.05	0.5	μΑ
Sleep	current	ISTB	VCC =2.0V	-	0.7	1.5	μΑ
Over-	Protection voltage	Voc	VCC =3.5→4.5V	Voc -0.025	Voc	Voc +0.025	V
	Relief voltage	Vocr	VCC =4.5→3.5V	V _{OCR} -0.050	Vocr	Vocr +0.050	V
	Protection delay	Тос	VCC =3.5→4.5V	40	80	160	ms
Over-	Protection voltage	Vod	VCC=3.5→2.0V	Vod -0.080	Vod	V _{OD} +0.080	V
discharging	Relief voltage	Vodr	VCC =2.0→3.5V	Vodr -0.100	Vodr	Vodr +0.100	v
	Protection delay	Тор	VCC =3.5→2.0V	20	40	80	ms
	Protection voltage	VEC	VM- VSS=0→0.20V	V _{EC} -0.010	VEC	V _{EC} +0.010	V
Discharging over- current	Protection delay	TEC	VM- VSS=0→0.20V	5	10	20	ms
	Relief delay	TECR	VM- VSS=0.20→0V	1.0	2.0	4.0	ms
Charging over-current	Protection voltage	Vсна	VSS- VM=0→0.30V	Vсна -0.020	Vсна	V _{СНА} +0.020	V
	Protection delay	Тсна	VSS- VM=0→0.30V	5	10	20	ms
	Relief delay	Tchar	VSS- VM=0.30V→0	1.0	2.0	4.0	ms
Short circuit	Protection voltage	VSHORT	VM - VSS=0→1.5V	0.3	0.4	0.5	v
	Protection delay	TSHORT	VM - VSS=0→1.5V	150	300	600	μs
	Relief delay	Tshortr	VM - VSS=1.5V→0V	1.0	Min Typical Ma value value value value 1.0 - 0.05 0.01 - 0.05 0.025 Voc 40 0.025 Voc 40 80 0.000 0.050 VocR 40 80 0.000 0.050 VocR 40 80 0.000 0.050 VocR 40 40 80 0.000 0.050 VocR 40 <	4.0	ms
Source-so Breako	pu rce ver interlay resistance	Rss(on)	VCC=3.7V, ID=1.0A	-	60	80	mΩ
0V chargin	ng, charger start-up voltage	Vovch	The function of permission of charging to 0V batteries	1.2	-	-	V

■Function description

1. Over-charging state

When the voltage of the battery rises to VOC or above and continues for some time T_{OC} , the output of the CO terminal will be reversed, which turns off the charging control MOS pipe and suspends charging; it is known as the over-charging state. When the voltage of the battery declines to under the over-charging relief voltage V_{OCR} and continues for some time T_{OCR} , the over-charging state is relieved, and it recovers to the normal state.

- When entering into the over-charging state, in order to relieve this state, there are two conditions as follows:
- a. The over-charging locking function
- 1) Disconnect the charger and connect it with no load, and $V_{CHA} \le V_{VM} \le V_{EC}$, when the voltage of the battery declines to under the over-charging relief voltage V_{OCR} , the over-charging state will be relieved.

2)Disconnect the charger and connect it with a load; if $V_{VM} > V_{EC}$, it is only needed to achieve VCC<VOC, the over-charging state will be relieved; this function is known as the load detection function. Notes: if the charger is kept connected after detection of over-charging, the over-charging state cannot be relieved even though the chip voltage declines to under V_{OCR} . The over-charging discharging state can be relieved only when the charger is not connected, and VM> VCHA.

- b. Over-charging no locking function
- 1)No matter if the charger is connected, when the voltage of the battery declines to under the over-charging relief voltage V_{OCR} , the over-charging state will be relieved.
- 2)Disconnect the charger and connect it with a load; if $V_{VM} > V_{EC}$, it is only needed to achieve VCC $< V_{OC}$, the overcharging state will be relieved; this function is known as the load detection function.

2. Over-discharging state

When the voltage of the battery declines to under V_{OD} and continues for some time T_{OD} , the output of the DO terminal will be reversed, which turns off the discharging control MOS pipe and suspends discharging; it is known as the over-discharging state. When the voltage of the battery rises to above the over-discharging relief voltage VODR and continues for some time T_{ODR} , the over-discharging state is relieved, and it recovers to the normal state.

When entering into the over-discharging state, in order to relieve this state and recover to the normal state, there are some conditions as follows:

- 3) Connect the charger; if the voltage of the VM terminal is lower than the charging over-current detection voltage (V_{CHA}), when the voltage of the battery is higher than the over-discharging detection voltage (V_{OD}), the over-discharging state is relieved, and it recovers to the normal working state. This function is known as the charger detection function.
- ⁴⁾ Connect the charger; if the voltage of the VM terminal is higher than the charging over-current detection voltage (V_{CHA}), when the voltage of the battery is higher than the over-discharging relief voltage (V_{ODR}), the over-discharging state is relieved, and it recovers to the normal working state.
- ⁵) For products with over-discharging no locking function (sleep self-recovery), if the charger is not connected, when the voltage of the battery recovers to above the over-discharging relief voltage (V_{ODR}) automatically, the over-discharging state is relieved, and it recovers to the normal working state;
- 6) For products with over-discharging locking function (sleep locking), it is required to achieve VM≤0V by connecting the charger, and then meet the condition of 1 or 2 mentioned above, to relieve the over-discharging state, to recover to the normal working state

SL197-1

3.Discharging over-current state

When the battery is in the discharging state, the voltage of the VM end will increase with the growth of the discharging current. When the voltage of the VM end is higher than V_{EC} and continues for some time T_{EC} , the chip judges that there is discharging overcurrent. When the voltage of the VM end is higher than V_{SHORT} and continues for some time T_{SHORT} , the chip judges that there is short circuit. In any of the 2 states mentioned above, the output of the DO terminal will be reversed, to turn off the discharging control MOS pipe and suspend discharging.

As long as the equivalent resistance value of the load increases or the load is broken off, making VM<VDD-1.0V, the discharging overcurrent state can be relieved, to recover to the normal state.

4.Charging over-current detection

For the battery in normal working state, during the charging process, if the voltage of the VM terminal is lower than the charging over-current detection voltage (V_{CHA}), and the state continues for more than the charging over-current detection delay time (T_{CHA}), the MOSFET used for charging control is turned off, and charging is suspended; this state is known as the charging over-current state. After entering into the charging over-current detection state, if the charger is disconnected, making the voltage of the VM terminal higher than the charging over-current detection voltage (V_{CHA}), the charging over-current state is relieved, and it recovers to the normal working state.

5.0V charging function

The function is used for recharging for the battery of 0V after self-discharging. When the voltage of the charger between the positive pole (P+) and the negative pole (P-) of the battery is higher than the starting voltage (V_{0VCH}) of the charger charging for the 0V battery, the gate pole of the MOSFET used for charging control is fixed as the electric potential of the VDD terminal. The voltage difference between the gate pole of MOSFET and the source pole because of the voltage of the charter is higher than the break-over voltage, the MOSFET used for charging control is broken over (CO terminal opened), and it starts charging. At this time, the MOSFET for discharging control is still disconnected, and the charging current flows through the internal parasitic diode. When the voltage of the battery is higher than the over-discharging detection voltage (V_{OD}), IC enters into the normal working state.

■Package information

DFN2X2-6L(T0.55mm P0.65mm) package outline dimension

TOP VIEW

BOTTOW VIEW

	MIN	NOM	MAX	
D	1.90	2.00	2.10	
E	1.90	2.00	2.10	
D1	0.65	0.70	0.75	
E1	0.85	0.90	0.95	
L	0.30	0.35	0.40	
b	0.28	0.33	0.38	
е		0.65BSC		
A	0.50	0.55	0.60	
A1		0.15REF		
A2	0.00		0.05	
Z1	0.25	0.30	0.35	
Z2	0.135	0.185	0.235	